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Wave functions which are compact, but still quite accurate, are extremely valuable as tools for gaining
understanding of quantum systems. This paper investigates the use for that purpose of functions that depend
exponentially on all the interparticle distances of a few-body system, illustrated by a study of the ground
electronic states of the He isoelectronic seri&fdm 1 to 10). Using as few as 4 exponential basis functions,

it is found that nonrelativistic energies are reproduced to within 38 microhartrees of the exact values, an error
far less than for previously reported compact wave functions. Other properties are also well-represented.

I. Introduction We conclude with a look at the prospects for applying the

A search for reasonably accurate but highly compact wave method of this paper to larger and chemically more interesting
functions in small quantum systems has been a recurring theme SyStéms.
motivated by the difficulty in interpreting the essence of accurate
wave functions that may be linear combinations of thousands Il. Method
of terms. Of particular interest are studies of two-electron atomic ) o
systems (the He isoelectronic series), the simplest systems which We consider systems consisting of two electrons and an
exhibit electron correlation effects. As long ago as 1929, Infinitely massive nucleus of charge In the nonrelativistic
Hylleraad showed the effectiveness of a basis that included the imit in which the Hamiltonian consists only of the kinetic
interelectron distancer, as an explicit coordinate in He, and  €Nergy and coulomb interactions, it is (in hartree atomic units:
the more recent, highly accurate studies of He-like systems have™e = h = e= 4meo = 1)
used extensive expansions in termsrgf and the electron
nuclear distances. These computations (see, for example, refs T =— ;(Vi + vg) _Z_Z_ 1 (1)

2 and 3) have focused on extreme accuracy rather than our 2 g Iy Iy
current objective of reasonable accuracy and great compactness.

An early attempt to find compact, but accurate, He-like wave Here,r; (with magnituder;) describes the position of electron
functions was reported in 1977 by Thakkar and Srhiltheir i relative to the nucleus; is the interelectron distande; —
definition of compact was less stringent than we apply here; r,|, andv; is with respect to the coordinates igf
they found that 66-term wave functions gave excellent results  the gpatial dependence of the ground-state wave function
for both energy and other properties. In 1992, Kogavisited W will be symmetric in the electron coordinates and depend
the use of Hylleraas-type expansions in He-like systems, gnjy on the interparticle distances rz, andri, We construct
obtaining compact wave functions (of up to 6 terms) that yielded i from basis functiongp; of the form
a significant improvement in energy relative to expansions of
similar length by others. More recently, Kleinekafbig Patil,
Tang, and Toenni€ghereinafter KPTT) proposed a compact
He wave function, the form of which is largely determined by
requirements that it be asymptotically correct in both the small- where 7, is an operator interchanging and r.. We have
and large-distance limits. While the approaches of Koga and chosen to restrict the parametess i, andy; to real values. It
KPTT are interesting from a fundamental viewpoint, neither is not necessary that they all be nonnegative; it is sufficient to
provides the accuracy that is needed for some purposes. Thaequirea; + i > 0, a; + yi > 0, andfi + yi > 0.
present communication describes an alternative to the work of ~ Note that eq 2 differs from the more frequently used Hylleraas
those authors and involves comparable or less computationalansatz (that employed by Koga) in that the exponentials are
effort associated with the use of the compact wave functions, not multiplied by powers ofy, r,, or r15, and that the parameter
but yields many properties with orders of magnitude less error. y; is not set to zero. The needed dependence on the interelectron
Even the properties for which satisfaction is built into the KPTT distance is obtained here by the exponential factor-exp(y).

b = 1+ -(/12) g Gin—pireyire 2)

approach are rendered here with satisfactory accuracy. Unlike the custom with Hylleraas basis sets of taking a fixed
T Part of the special issue “Jack Simons Festschrift” value ofa. = ’8 and using many different powers of theand
* Corresponding author. Electronic address: harris@qtp.ufl.edu. riz, the present approach obtains wave function flexibility by
* Electronic address: vhsmith@chem.queensu.ca. assigning individual values af, 5, andy to eachg;.
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For given values ofy;, i, andy;, the coefficientsC; in a TABLE 1: Nonlinear Parameters (bohr—1) of Optimized
wave function of the form Four-Configuration Wave Functions, of Functional Form
Given in Eq 22
Y= z Cio, (3) cfg no. a b g
! H- 1 0.857 017 0.751 909 0.101 595
. o L 2 0.841 729 0.762 291 0.105 682
were determined variationally, minimizing the energy expecta- 3 1.021 337 0.310090 —0.016 292
tion valueE = W|.7/WOby standard methods. The matrix 4 0.814 655 0.814 651 —0.212153
elements needed for this purpose were calculated using formulas He 1 2.373 427 1.823 077 0.190 179
that have been extensively documented in the literéfimad g g.ggg 23? %Sg; ggéll 8%22 ggg
need not be repeated here. It suffices to observe that the 2 5106 452 1395750 —0.096177
procedures are rapid, convenient, and numerically stable. -
Optimum values of they, fi, andy; were then determined N L 13.283 463 9675289 2615987
- o . . . 2 13.850 848 9.397 064 2.461 465
variationally, minimizing E (obtained as described in the 3 11180907  11.180 904 2.949 205
preceding paragraph) with respect to these nonlinear parameters 4 10.497 988 9.007 933 —0.119 465

by application of a conjugate gradient method. We found that,
for a givenz, the parameter space contained several local energy
minima, and it was necessary to carry out multiple searches TABLE 2: Error in the Ground-State Energy ( ghartreesy

a Configurations in descending order of importance.

from a number of different starting points to reach a reasonable oH- “He oNeB

:evel %f assyr(;a_nce_ thaﬁ theI gtl)otl)alle.nergy mlmrgumd h%d pe%n KPTTo 12510 37244 68065
.ocate . An indication t atg obal minima were indeed obtaine Kogé (4 term) 823.6 952.1 1941.3

is provided by the fact that the energy errors vary smoothly _ (6 term) 181.3 271.6 556.3

with Z, as do the nonlinear parameters (with the exception noted this research 37.9 36.4 32.8
toward the end of the next section of this paper). aThe “exact’” energies used and the energies computed in this

We note parenthetically that from a technical perspective the research are included in Table!3Ref 6.¢ Ref 5.
optimization of the nonlinear parameters is a demanding task. _ . )
In the limit of large numbers of configurations, the wave JABLE 3: Exact®and Compact-Function Ground-State
) . Properties, Respectively Labelled E and €
function becomes completely independent of the parameter

values, and even for the expansion lengths reported here (four “H” “He “Ne?*
configurations, vide infra), the optimization is exceedingly ill-  Ec —0.527 7131 —2.9036880 —93.906 7737
conditioned. Ee —0.5277510 —2.9037244  —93.906 806 5
[1erold —0.684555 —0.064 667 —0.000 402 503
. . [yerold —0.687313 —0.064 737 —0.000 402 542
Ill. Wave Functions and Energies Prpsld 0.032 967 0.158 902 1.217 620
Using the procedures described in the preceding section, we %a%ﬁ 8:(1)231 ?gg (1):%83 (3)‘138 2917%}171 079
studied two-electron systems withvalues from 1 through 10 3(ry)re 0.164 553 1.810 429 297.623
(H™, He, Lit, ..., NéT). We report here results for the ground  ©B(r1)d 0.002 865 0.108 314 32.709
electronic states of H He, and N&"; data for the other systems ~ [0(r12)(¢ 0.002 738 0.106 345 32.620
ill be presented in a forum without length restrictions. We B(ryo(rle - 0.005128 1.884 80775
witt b€ p : ut lengt : Br)o(r) 0005064  1.869 80 763
found the quality of the wave functions (with respect to both y, ¢ —0.996 —1.992 —9.992
energy and other properties) to be highly dependent on the vie J—ré.ggg J—rg.ggg —J}g.ggg
imizati ini Vi2,c : : )
completeness of the optimization. Examining the carefully i 40,500 10500 10500

optimized results as a function of the numbergpiised (i.e.,
the number of configurations), we came to the conclusion that 2 From high-accuracy computations in refs 3 and® Bata are in
an optimized four-configuration wave function yielded an hartree atomic unitsnf = A = e = 47 = 1). The quantities’ are
excellent compromise of the desirable but conflicting features cusp strengths, defined in eq 4.

of compactness and accuracy. Looki t at th funct th | that
Table 1 gives the nonlinear parameters of the optimized four- . ooKing next at the wave functions themselves, we see tha
in all cases there occur configurations with negative values of

configuration wave functions for H He, and N&", and Table th rameter: this is n v 1o obtain d descriotion
2 compares the ground-state energies for our wave functions. € parametey. his IS necessary 1o obtain a good descriptio

with those obtained from other recent studies (those of Koga n thg n.elghborhood'of the elegtreelectron cusp. There IS a
and KPTT). The first observation to be made now is that our qualitative change in the "_pt'm”m wave function as one
four-configuration wave functions yield surprisingly accurate proceeds fronZ = 1 to Z.= 2 wh_at IS ac_tually happenlng IS
energies, all within 3&hartree of the exact values. These errors that th_ere are two low-lying r_elatlve minima, with that corre-
are about 2 orders of magnitude less than those of KPTT, a;pondlng to the H wave f“”"“.o'f‘ becqmlng less favored As
factor of 20 to 60 less than those of the Koga four-term function Increases. For He, thej=t_ype mlnlmum IS on!y aboutpthartre(_e
(his expansion of length similar to ours), and about an order of a_bove the globgl minimum, wheq _Rl*e is reached, this
magnitude more precise than Koga’s six-term function. It should difference has widened to over 1 millihartree.

also be noted that, unlike the other studies, our results do notd_ Itis |ntde_res£:1|ng to note that a phr(]anomgnon pafa“tfl' to thI?tf
deteriorate with increasing. An optimum compact expansion IScussed In the previous paragraph can be seen in the work o

should have this property, as electron correlation becomesK.Oga' He found that the most |mpo.rtant c.onflguratlons were
relatively less important a8 increases and, in fact, approaches different for H- than for He and the ions witd > 2.

a constant limiting value at infinit& (see discussions of the
1/Z expansion for this system, e.g., in a paper by Dalg8rno
Our results in fact represent the recovery of about 99.9% of the Table 3 compares various properties obtained with the wave
correlation energy throughout the He isoelectronic series. functions of this study against exact values from high-accuracy

IV. Properties
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computations. For completeness, we include the total energies
that were used to compute the numbers in Table 2. 1.6 /\ (@)

Since the wave functions used here were not constrained to /
give exact values of specific properties, it is of particular interest 12+ |
to see how well they do for quantities other than the energy. /
They all exactly satisfy the virial theorem, but that is a 0.8 ,/
consequence of the fact that it is automatically satisfied for the |
wave functions used here when the nonlinear parameters are 0.4 |
optimally scaled. Table 3 shows that the correlation in electron ' /
positions, as measured B4 -r,0]is reproduced to within a few
parts per thousand; even higher accuracy is noted for the 00 1 2 3
momentum correlatiofip;-p,0J It should be remembered that r
1-r,0and [p1-p.0are defined entirely by correlation effects;
both these quantities vanish in the independent-particle limit.

In summary, the data in Table 3 reinforce the earlier assertion 8
that these compact four-configuration wave functions provide
good descriptions of a wide range of properties in addition to ol
the energy, and the form of the wave function makes it easy to
use and interpret.

Turning now to local properties, we first look at the 1t
probabilities that particle positions coincide, corresponding to
the o-function expectation values in Table 2. We also examine

(b)

=

the cusp strength, with the electrenuclear cusp defined as 0 0 y > 3
r
v :Eﬁ(rl)alarlD 4) Figure 1. Electron-nuclear radial distribution function for He: (a)
1 o(r )0 D(rq); (b) p(r1), computed from the compact wave function.
The electror-electron cuspyi,, is defined analogously. It is 08 (a)
apparent that the compact wave functions provide a nearly
guantitative description of behavior in the vicinity of the nucleus. 06 | -
The electror-electron cusp is not as well described (with an
error of over 10%), presumably due to the small energetic 04l

importance of that feature.

One of the virtues of a compact description is the ability to
use it to examine additional features of the electron distribution
without the necessity of repeating extensive computations to
recreate complicated wave functions. We illustrate here by 00 i 5 s
presenting the pair distribution functions in He as given by the r
compact wave function. Figure 1 shows the electroaclear _
radial probability distributionD(r;) and the charge density \ (b)
p(r1) = D(ry)/4zr2, whereD(r1) has the definition 0.1 1 \

02+

D(ry) = 2(4ar,) [ dr,|W(ry, 15, 115l ®)

We follow the notation of Thakkar and Smith,who give 0.05
formulas for evaluation oD(r;) and P(r12) (vide infra). The
electron-electron pair distributio®(r1,) is defined analogously
to D(r1) (but without the prefactor 2). Figure 2 show$ri,)
and h(ri) = P(ri0)/4mri2 (the latter known as thatracule 0, ; 5 = 3
function). r

The radial d'?’t“buuons are qualitatively what is expected: Figure 2. Electron-electron radial distribution function for He: (a)
D(r1) has a maximum at an value somewhat greater tharZl/  p(r,,): (b) h(r1), computed from the compact wave function.
corresponding to partial shielding of the nucleus by the other
electron, whiler;; at the maximum irP(r1,) is somewhat larger  (r,,)0 All four graphs appear nearly identical to those for He
than+/2 times ther; value at the maximum db(r1), reflecting  in ref 10, indicating that our compact wave function has captured
the effect of electrorelectron repulsion. The plots p{ry) and the essence of the electron distribution in this system.
h(r12) clearly show the effects of the nucleaglectron and
electron-electron cusps. Note that the electralectron cusp V. Concluding Remarks
is entirely due to electron correlation; an independent-particle
wave function cannot caus#r,,) to have a local minimum at

It would be desirable if the type of analysis illustrated here

ri = 0. The vertical intercept gb(r;) corresponds to X [d- could be extended to systems containing larger numbers of
(ry)0 reflecting the fact thap describes the entire electron nuclei or electrons. However, a key feature (namely the
density (not that of one electron only), and the intercepi(iaf) occurrence of all the interparticle distanagsin exponents)

is, as it must be, consistent with the value tabulated(@er makes the evaluation of the necessary matrix elements very
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difficult. It is, nevertheless, possible to treat four-body systems from the U. S. National Science Foundation, grant PHY-
(e.g., the Li atom) by the present methods. All the matrix 0303412.
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