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Wave functions which are compact, but still quite accurate, are extremely valuable as tools for gaining
understanding of quantum systems. This paper investigates the use for that purpose of functions that depend
exponentially on all the interparticle distances of a few-body system, illustrated by a study of the ground
electronic states of the He isoelectronic series (Z from 1 to 10). Using as few as 4 exponential basis functions,
it is found that nonrelativistic energies are reproduced to within 38 microhartrees of the exact values, an error
far less than for previously reported compact wave functions. Other properties are also well-represented.

I. Introduction

A search for reasonably accurate but highly compact wave
functions in small quantum systems has been a recurring theme,
motivated by the difficulty in interpreting the essence of accurate
wave functions that may be linear combinations of thousands
of terms. Of particular interest are studies of two-electron atomic
systems (the He isoelectronic series), the simplest systems which
exhibit electron correlation effects. As long ago as 1929,
Hylleraas1 showed the effectiveness of a basis that included the
interelectron distancer12 as an explicit coordinate in He, and
the more recent, highly accurate studies of He-like systems have
used extensive expansions in terms ofr12 and the electron-
nuclear distances. These computations (see, for example, refs
2 and 3) have focused on extreme accuracy rather than our
current objective of reasonable accuracy and great compactness.

An early attempt to find compact, but accurate, He-like wave
functions was reported in 1977 by Thakkar and Smith.4 Their
definition of compact was less stringent than we apply here;
they found that 66-term wave functions gave excellent results
for both energy and other properties. In 1992, Koga5 revisited
the use of Hylleraas-type expansions in He-like systems,
obtaining compact wave functions (of up to 6 terms) that yielded
a significant improvement in energy relative to expansions of
similar length by others. More recently, Kleinekatho¨fer, Patil,
Tang, and Toennies6 (hereinafter KPTT) proposed a compact
He wave function, the form of which is largely determined by
requirements that it be asymptotically correct in both the small-
and large-distance limits. While the approaches of Koga and
KPTT are interesting from a fundamental viewpoint, neither
provides the accuracy that is needed for some purposes. The
present communication describes an alternative to the work of
those authors and involves comparable or less computational
effort associated with the use of the compact wave functions,
but yields many properties with orders of magnitude less error.
Even the properties for which satisfaction is built into the KPTT
approach are rendered here with satisfactory accuracy.

We conclude with a look at the prospects for applying the
method of this paper to larger and chemically more interesting
systems.

II. Method

We consider systems consisting of two electrons and an
infinitely massive nucleus of chargeZ. In the nonrelativistic
limit in which the Hamiltonian consists only of the kinetic
energy and coulomb interactions, it is (in hartree atomic units:
me ) p ) e ) 4πε0 ) 1)

Here,r i (with magnituderi) describes the position of electron
i relative to the nucleus,r12 is the interelectron distance|r1 -
r2|, and3i is with respect to the coordinates ofr i.

The spatial dependence of the ground-state wave function
Ψ will be symmetric in the electron coordinates and depend
only on the interparticle distancesr1, r2, andr12. We construct
it from basis functionsφi of the form

where P12 is an operator interchangingr1 and r2. We have
chosen to restrict the parametersRi, âi, andγi to real values. It
is not necessary that they all be nonnegative; it is sufficient to
requireRi + âi > 0, Ri + γi > 0, andâi + γi > 0.

Note that eq 2 differs from the more frequently used Hylleraas
ansatz (that employed by Koga) in that the exponentials are
not multiplied by powers ofr1, r2, or r12, and that the parameter
γi is not set to zero. The needed dependence on the interelectron
distance is obtained here by the exponential factor exp(-γir12).
Unlike the custom with Hylleraas basis sets of taking a fixed
value ofR ) â and using many different powers of theri and
r12, the present approach obtains wave function flexibility by
assigning individual values ofR, â, andγ to eachφi.
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For given values ofRi, âi, and γi, the coefficientsCi in a
wave function of the form

were determined variationally, minimizing the energy expecta-
tion value E ) 〈Ψ|H|Ψ〉 by standard methods. The matrix
elements needed for this purpose were calculated using formulas
that have been extensively documented in the literature7,8 and
need not be repeated here. It suffices to observe that the
procedures are rapid, convenient, and numerically stable.

Optimum values of theRi, âi, andγi were then determined
variationally, minimizing E (obtained as described in the
preceding paragraph) with respect to these nonlinear parameters
by application of a conjugate gradient method. We found that,
for a givenZ, the parameter space contained several local energy
minima, and it was necessary to carry out multiple searches
from a number of different starting points to reach a reasonable
level of assurance that the global energy minimum had been
located. An indication that global minima were indeed obtained
is provided by the fact that the energy errors vary smoothly
with Z, as do the nonlinear parameters (with the exception noted
toward the end of the next section of this paper).

We note parenthetically that from a technical perspective the
optimization of the nonlinear parameters is a demanding task.
In the limit of large numbers of configurations, the wave
function becomes completely independent of the parameter
values, and even for the expansion lengths reported here (four
configurations, vide infra), the optimization is exceedingly ill-
conditioned.

III. Wave Functions and Energies

Using the procedures described in the preceding section, we
studied two-electron systems withZ values from 1 through 10
(H-, He, Li+, ..., Ne8+). We report here results for the ground
electronic states of H-, He, and Ne8+; data for the other systems
will be presented in a forum without length restrictions. We
found the quality of the wave functions (with respect to both
energy and other properties) to be highly dependent on the
completeness of the optimization. Examining the carefully
optimized results as a function of the number ofφi used (i.e.,
the number of configurations), we came to the conclusion that
an optimized four-configuration wave function yielded an
excellent compromise of the desirable but conflicting features
of compactness and accuracy.

Table 1 gives the nonlinear parameters of the optimized four-
configuration wave functions for H-, He, and Ne8+, and Table
2 compares the ground-state energies for our wave functions
with those obtained from other recent studies (those of Koga
and KPTT). The first observation to be made now is that our
four-configuration wave functions yield surprisingly accurate
energies, all within 38µhartree of the exact values. These errors
are about 2 orders of magnitude less than those of KPTT, a
factor of 20 to 60 less than those of the Koga four-term function
(his expansion of length similar to ours), and about an order of
magnitude more precise than Koga’s six-term function. It should
also be noted that, unlike the other studies, our results do not
deteriorate with increasingZ. An optimum compact expansion
should have this property, as electron correlation becomes
relatively less important asZ increases and, in fact, approaches
a constant limiting value at infiniteZ (see discussions of the
1/Z expansion for this system, e.g., in a paper by Dalgarno9).
Our results in fact represent the recovery of about 99.9% of the
correlation energy throughout the He isoelectronic series.

Looking next at the wave functions themselves, we see that
in all cases there occur configurations with negative values of
the parameterγ: this is necessary to obtain a good description
in the neighborhood of the electron-electron cusp. There is a
qualitative change in the optimum wave function as one
proceeds fromZ ) 1 to Z ) 2; what is actually happening is
that there are two low-lying relative minima, with that corre-
sponding to the H- wave function becoming less favored asZ
increases. For He, the H--type minimum is only about 4µhartree
above the global minimum; when Ne8+ is reached, this
difference has widened to over 1 millihartree.

It is interesting to note that a phenomenon parallel to that
discussed in the previous paragraph can be seen in the work of
Koga. He found that the most important configurations were
different for H- than for He and the ions withZ > 2.

IV. Properties

Table 3 compares various properties obtained with the wave
functions of this study against exact values from high-accuracy

Ψ ) ∑
i

Ciφi (3)

TABLE 1: Nonlinear Parameters (bohr-1) of Optimized
Four-Configuration Wave Functions, of Functional Form
Given in Eq 2a

cfg no. a b g

H- 1 0.857 017 0.751 909 0.101 595
2 0.841 729 0.762 291 0.105 682
3 1.021 337 0.310 090 -0.016 292
4 0.814 655 0.814 651 -0.212 153

He 1 2.373 427 1.823 077 0.190 179
2 2.508 989 1.767 884 0.130 308
3 2.068 441 2.022 821 0.264 338
4 2.106 452 1.395 750 -0.096 177

Ne8+ 1 13.283 463 9.675 289 2.615 987
2 13.850 848 9.397 064 2.461 465
3 11.180 907 11.180 904 2.949 205
4 10.497 988 9.007 933 -0.119 465

a Configurations in descending order of importance.

TABLE 2: Error in the Ground-State Energy ( µhartrees)a

∞H- ∞He ∞Ne8+

KPTTb 1251.0 3724.4 6806.5
Kogac (4 term) 823.6 952.1 1941.3

(6 term) 181.3 271.6 556.3
this research 37.9 36.4 32.8

a The “exact” energies used and the energies computed in this
research are included in Table 3.b Ref 6. c Ref 5.

TABLE 3: Exact a and Compact-Function Ground-State
Properties, Respectively Labelled E and Cb

∞H- ∞He ∞Ne8+

EC -0.527 713 1 -2.903 688 0 -93.906 773 7
EE -0.527 751 0 -2.903 724 4 -93.906 806 5
〈r 1‚r 2〉C -0.684 555 -0.064 667 -0.000 402 503
〈r 1‚r 2〉E -0.687 313 -0.064 737 -0.000 402 542
〈p1‚p2〉C 0.032 967 0.158 902 1.217 620
〈p1‚p2〉E 0.032 880 0.159 069 1.217 079
〈δ(r 1)〉C 0.164 154 1.807 310 297.541
〈δ(r 1)〉E 0.164 553 1.810 429 297.623
〈δ(r 12)〉C 0.002 865 0.108 314 32.709
〈δ(r 12)〉E 0.002 738 0.106 345 32.620
〈δ(r 1)δ(r 2)〉C 0.005 128 1.884 80 775
〈δ(r 1)δ(r 2)〉E 0.005 064 1.869 80 763
ν1,C -0.996 -1.992 -9.992
ν1,E -1.000 -2.000 -10.000
ν12,C +0.437 +0.437 +0.445
ν12,E +0.500 +0.500 +0.500

a From high-accuracy computations in refs 3 and 8.b Data are in
hartree atomic units (me ) p ) e ) 4πe0 ) 1). The quantitiesν are
cusp strengths, defined in eq 4.
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computations. For completeness, we include the total energies
that were used to compute the numbers in Table 2.

Since the wave functions used here were not constrained to
give exact values of specific properties, it is of particular interest
to see how well they do for quantities other than the energy.
They all exactly satisfy the virial theorem, but that is a
consequence of the fact that it is automatically satisfied for the
wave functions used here when the nonlinear parameters are
optimally scaled. Table 3 shows that the correlation in electron
positions, as measured by〈r1‚r2〉, is reproduced to within a few
parts per thousand; even higher accuracy is noted for the
momentum correlation〈p1‚p2〉. It should be remembered that
〈r1‚r2〉 and 〈p1‚p2〉 are defined entirely by correlation effects;
both these quantities vanish in the independent-particle limit.

In summary, the data in Table 3 reinforce the earlier assertion
that these compact four-configuration wave functions provide
good descriptions of a wide range of properties in addition to
the energy, and the form of the wave function makes it easy to
use and interpret.

Turning now to local properties, we first look at the
probabilities that particle positions coincide, corresponding to
theδ-function expectation values in Table 2. We also examine
the cusp strength, with the electron-nuclear cusp defined as

The electron-electron cusp,ν12, is defined analogously. It is
apparent that the compact wave functions provide a nearly
quantitative description of behavior in the vicinity of the nucleus.
The electron-electron cusp is not as well described (with an
error of over 10%), presumably due to the small energetic
importance of that feature.

One of the virtues of a compact description is the ability to
use it to examine additional features of the electron distribution
without the necessity of repeating extensive computations to
recreate complicated wave functions. We illustrate here by
presenting the pair distribution functions in He as given by the
compact wave function. Figure 1 shows the electron-nuclear
radial probability distributionD(r1) and the charge density
F(r1) ) D(r1)/4πr1

2, whereD(r1) has the definition

We follow the notation of Thakkar and Smith,10 who give
formulas for evaluation ofD(r1) and P(r12) (vide infra). The
electron-electron pair distributionP(r12) is defined analogously
to D(r1) (but without the prefactor 2). Figure 2 showsP(r12)
and h(r12) ) P(r12)/4πr12

2 (the latter known as theintracule
function).

The radial distributions are qualitatively what is expected:
D(r1) has a maximum at anr1 value somewhat greater than 1/Z,
corresponding to partial shielding of the nucleus by the other
electron, whiler12 at the maximum inP(r12) is somewhat larger
thanx2 times ther1 value at the maximum ofD(r1), reflecting
the effect of electron-electron repulsion. The plots ofF(r1) and
h(r12) clearly show the effects of the nuclear-electron and
electron-electron cusps. Note that the electron-electron cusp
is entirely due to electron correlation; an independent-particle
wave function cannot causeh(r12) to have a local minimum at
r12 ) 0. The vertical intercept ofF(r1) corresponds to 2× 〈δ-
(r1)〉, reflecting the fact thatF describes the entire electron
density (not that of one electron only), and the intercept ofh(r12)
is, as it must be, consistent with the value tabulated for〈δ-

(r12)〉. All four graphs appear nearly identical to those for He
in ref 10, indicating that our compact wave function has captured
the essence of the electron distribution in this system.

V. Concluding Remarks

It would be desirable if the type of analysis illustrated here
could be extended to systems containing larger numbers of
nuclei or electrons. However, a key feature (namely the
occurrence of all the interparticle distancesrij in exponents)
makes the evaluation of the necessary matrix elements very

ν1 )
〈δ(r1)∂/∂r1〉

〈δ(r1)〉
(4)

D(r1) ) 2(4πr1
2) ∫ dr2|Ψ(r1, r2, r12)|2 (5)

Figure 1. Electron-nuclear radial distribution function for He: (a)
D(r1); (b) F(r1), computed from the compact wave function.

Figure 2. Electron-electron radial distribution function for He: (a)
P(r12); (b) h(r12), computed from the compact wave function.
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difficult. It is, nevertheless, possible to treat four-body systems
(e.g., the Li atom) by the present methods. All the matrix
elements arising in energy computations on such systems can
be evaluated analytically using closed formulas first obtained
by Fromm and Hill;11 see also further development of the
formulation by a group that includes the present authors.12,13

Another possibility, not yet significantly exploited, would be
to represent the correlated exponentials by linear combinations
of correlated Gaussians, for which general formulas are now
available.14

One closing observation: The present work shows that,
although it is difficult to obtain an optimum description of a
simple atomic or molecular system within a modest basis
containing nonlinear parameters, such bases may permit better
and more economical representations than is generally realized.
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